Counting Rational Points on Cubic Hypersurfaces: Corrigendum
نویسنده
چکیده
R0 0 and let g ∈ Z[x1, . . . , xn] be a cubic polynomial such that g0 is non-singular and ‖g‖P 6 H, for some H 6 P. Let q̃ = b2 2c 2d, where b2 := ∏
منابع مشابه
Counting Rational Points on Cubic Hypersurfaces
Let X ⊂ P be a geometrically integral cubic hypersurface defined over Q, with singular locus of dimension 6 dimX − 4. Then the main result in this paper is a proof of the fact that X(Q) contains Oε,X(B ) points of height at most B.
متن کاملLooking for Rational Curves on Cubic Hypersurfaces
The aim of these lectures is to study rational points and rational curves on varieties, mainly over finite fields Fq. We concentrate on hypersurfaces Xn of degree ≤ n+ 1 in Pn+1, especially on cubic hypersurfaces. The theorem of Chevalley–Warning (cf. Esnault’s lectures) guarantees rational points on low degree hypersurfaces over finite fields. That is, if X ⊂ Pn+1 is a hypersurface of degree ≤...
متن کاملRATIONAL POINTS ON CUBIC HYPERSURFACES OVER Fq(t)
The Hasse principle and weak approximation is established for non-singular cubic hypersurfaces X over the function field Fq(t), provided that char(Fq) > 3 and X has dimension at least 6.
متن کاملRational Points on Intersections of Cubic and Quadric Hypersurfaces
We investigate the Hasse principle for complete intersections cut out by a quadric and cubic hypersurface defined over the rational numbers.
متن کاملRational Points on Cubic Hypersurfaces That Split off a Form
— Let X be a projective cubic hypersurface of dimension 11 or more, which is defined over Q. We show that X(Q) is non-empty provided that the cubic form defining X can be written as the sum of two forms that share no common variables.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013